Stoneley wave attenuation and dispersion and the dynamic permeability correction

Author:

Zhang Xiumei1ORCID,Müller Tobias M.2ORCID

Affiliation:

1. Institute of Acoustics, State Key Laboratory of Acoustics, Chinese Academy of Sciences and Beijing Engineering Research Center of Deep Drilling Exploration, Beijing 100190, China.(corresponding author).

2. Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Department of Seismology, Ensenada, BC 22860, México..

Abstract

Stoneley waves induce fluid pressure gradients in a permeable formation surrounding the borehole. These gradients are equilibrated through pressure diffusion, that is to say, slow P-waves in the context of Biot’s poroelasticity theory. Because slow P-waves are strongly sensitive to the formation permeability, the Stoneley-slow P-wave interaction can be used to retrieve the formation permeability from the attenuation and dispersion of Stoneley waves. The accuracy of this established technique in high-permeability formations deteriorates when slow P-waves are not pure diffusion waves; hence, the permeability dependence is more complicated. This effect on Stoneley waves is captured by applying the Johnson-Koplik-Dashen dynamic permeability model. Their model depends on a viscous relaxation length. However, in the estimation of formation permeability from Stoneley waves, this parameter is typically not measured but is estimated from an empirical equation, wherein material properties and microstructural descriptors are lumped together. When the so-calculated relaxation length is erroneous, the inverted formation permeability from the Stoneley wave is not correct either. To overcome this limitation and to provide a versatile alternative, the dynamic permeability problem is reformulated within the viscosity-extended Biot framework. Its physical basis is the conversion scattering in random media from slow P- to slow S-waves. The correlation length of this so-called stochastic dynamic permeability model can be derived from pore-scale images, and it also captures the effect of pore interface roughness. This model is then combined with the simplified Biot-Rosenbaum model to predict Stoneley wave attenuation and dispersion. We have applied this hybrid model to interpret laboratory measurements for which the previously suggested choice of the viscous relaxation length does not provide an accurate prediction. The results indicate that the hybrid model can provide another approach to model Stoneley wave attenuation and dispersion across the entire frequency range.

Funder

National Natural Science Foundation of China

PetroChina Innovation Foundation

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3