Phenomenological understanding of poroelasticity via the micromechanics of a simple digital-rock model

Author:

Couples Gary D.1ORCID

Affiliation:

1. Heriot-Watt University, Institute of Petroleum Engineering, Edinburgh EH14 4AS, UK..

Abstract

Poroelasticity is a material concept that expresses the reversible, macroscale process interactions that occur in a porous material, such as rocks. These process interactions take place between the pore fluids and the rock framework (or “skeleton”) that contains the pores. The phenomenological basis of poro-elasticity is examined via a micromechanics analysis, using a simplified digital-rock model that consists of solid elements in a lattice arrangement, and which hosts a well-connected, lattice-like network of simply shaped pore elements. The quasistatic poromechanical bulk response of this model is defined fully by closed-form equations that provide a clear understanding of the process interactions and that allow key effects to be identified. Several external boundary conditions (nonisotropic strain and stress) are analyzed, with drained and undrained pore-fluid conditions, along with arbitrary pore pressure states. The calculated responses of the pore-scale model, when translated into continuum-scale equivalent behaviors, indicate significant problems with the existing theories of poroelasticity that are rooted in an enriched-continuum perspective. Specifically, the results indicate that the principle of effective stress (and the Biot coefficient alpha) is wrongly attributed to a deficiency in the role of pore pressure. Instead, the micromechanics-based phenomenological understanding identifies the change of effective stress, in a characteristically confined setting, as being the result of changes in the stress components, with a key dependency on the specifics of the far-field constraints. Thus, poroelasticity is not a material characteristic; instead, it is a description of a nonlinear system operating at the pore scale. The analysis reveals a discrepancy between the stress states within the model domain and the external stress state. This yet remains to be addressed, to translate the microscale behavior into an equivalent material law.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3