Simulation of wave propagation in linear thermoelastic media

Author:

Carcione José M.1ORCID,Wang Zhi-Wei2,Ling Wenchang3ORCID,Salusti Ettore4,Ba Jing3ORCID,Fu Li-Yun5ORCID

Affiliation:

1. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, Sgonico, Trieste 34010, Italy and Hohai University, School of Earth Sciences and Engineering, Nanjing, China.

2. Chinese Academy of Sciences, Key Laboratory of Petroleum Resource Research, Institute of Geology and Geophysics, Beijing, China and Chinese Academy of Sciences, Institutions of Earth Sciences, Beijing, China.

3. Hohai University, School of Earth Sciences and Engineering, Nanjing, China.(corresponding author).

4. La Sapienza University, Department of Physics, Rome, Italy.

5. China University of Petroleum (East China), School of Geosciences, Qingdao, China..

Abstract

We have developed a numerical algorithm for simulation of wave propagation in linear thermoelastic media, based on a generalized Fourier law of heat transport in analogy with a Maxwell model of viscoelasticity. The wavefield is computed by using a grid method based on the Fourier differential operator and two time-integration algorithms to cross-check solutions. Because the presence of a slow quasistatic mode (the thermal mode) makes the differential equations stiff and unstable for explicit time-stepping methods, first, a second-order time-splitting algorithm solves the unstable part analytically and a Runge-Kutta method the regular equations. Alternatively, a first-order explicit Crank-Nicolson algorithm yields more stable solutions for low values of the thermal conductivity. These time-stepping methods are second- and first-order accurate, respectively. The Fourier differential provides spectral accuracy in the calculation of the spatial derivatives. The model predicts three propagation modes, namely, a fast compressional or (elastic) P-wave, a slow thermal P diffusion/wave (the T-wave), having similar characteristics to the fast and slow P-waves of poroelasticity, respectively, and an S-wave. The thermal mode is diffusive for low values of the thermal conductivity and wave-like for high values of this property. Three velocities define the wavefront of the fast P-wave, i.e., the isothermal velocity in the uncoupled case, the adiabatic velocity at low frequencies, and a higher velocity at high frequencies.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Major State Research Development Program of China

Cultivation Program of “111” Plan of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3