Affiliation:
1. King Fahd University of Petroleum and Minerals (KFUPM), College of Petroleum Engineering and Geosciences, Dhahran 31261, Saudi Arabia.(corresponding author).
2. King Abdullah University of Science and Technology (KAUST), Division of Physics and Engineering, Thuwal 23955, Saudi Arabia..
Abstract
The wave equation plays a central role in seismic modeling, processing, imaging and inversion. Incorporating attenuation anisotropy into the acoustic anisotropic wave equations provides a choice for acoustic forward and inverse modeling in attenuating anisotropic media. However, the existing viscoacoustic anisotropic wave equations are obtained for a specified viscoacoustic model. We have developed a relatively general representation of the scalar and vector viscoacoustic wave equations for orthorhombic anisotropy. We also obtain the viscoacoustic wave equations for transverse isotropy as a special case. The viscoacoustic orthorhombic wave equations are flexible for multiple viscoacoustic models. We take into account the classic visocoacoustic models such as the Kelvin-Voigt, Maxwell, standard-linear-solid and Kjartansson models, and we derive the corresponding viscoacoustic wave equations in differential form. To analyze the wave propagation in viscoacoustic models, we derive the asymptotic point-source solution of the scalar wave equation. Numerical examples indicate a comparison of the acoustic waveforms excited by a point source in the viscoacoustic orthorhombic models and the corresponding nonattenuating model, and the effect of the attenuation anisotropy on the acoustic waveforms.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献