On the physical principles underlying electromagnetic induction

Author:

Everett Mark E.1ORCID,Chave Alan D.2ORCID

Affiliation:

1. Texas A&M University, Department of Geology and Geophysics, College Station, Texas, USA.(corresponding author).

2. Woods Hole Oceanographic Institution, Deep Submergence Laboratory, Department of Applied Ocean Physics and Engineering, Woods Hole, Massachusetts, USA..

Abstract

This paper provides a theoretical overview of some of the fundamental concepts underlying electromagnetic (EM) induction exploration methods using marine controlled-source EMs as an exemplar. In particular, it will be shown, from different vantage points, that EM induction operates in the magnetoquasistatic regime in which inductive effects dominate, capacitive effects are ignored, and the displacement current is negligible; hence, charge polarization and dielectric phenomena play no role. We determine some of the major physical consequences of this approximation, and we make a distinction between wave physics and diffusive behavior, which is of particular interest in the special case of time-periodic excitation. We distinguish the fundamentally different roles of mobile charge carriers and bound charges in EM induction. It is emphasized that EM induction cannot be fully understood by comparing and contrasting Maxwell’s equations with governing equations from other disciplines that possess a similar mathematical structure. It is suggested that visualizations of energy flow using the Poynting vector and the Joule heating parameters provide a powerful tool to understand how the geologic medium shapes EM induction responses.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference39 articles.

1. Decomposition of electromagnetic fields into upgoing and downgoing components

2. Controlled-source electromagnetic sounding in shallow water: Principles and applications

3. BGR, 2019, www.bgr.bund.de/EN/Themen/MarineRohstoffforschung/Forschungsinfrastruktur/hydra_en.html, accessed 24 July 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3