Application of very fast simulated annealing and differential evolution in the search for FO-CRS wavefield attributes

Author:

Garabito German1ORCID,Cruz João Carlos R.2ORCID

Affiliation:

1. Federal University of Rio Grande do Norte — UFRN, Department of Petroleum Engineering, Campus da UFRN, Lagoa Nova, CEP 59078-970, Natal, Rio Grande do Norte, Brazil..

2. Federal University of Pará — UFPA, Department of Geophysics, Rual Augusto Corrêa, 01 — Guama, CEP 66075-110, Belém, Pará, Brazil..

Abstract

The finite-offset common-reflection-surface (FO-CRS) stack method can be used to simulate any common-offset (CO) seismic section by stacking prestack seismic data along the surfaces defined by the paraxial hyperbolic traveltime approximation. In two dimensions, the FO-CRS stacking operator depends on five kinematic wavefield attributes for every time sample of the target CO section. The main problem with this method is identifying a computationally efficient data-driven search strategy for accurately determining the best set of FO-CRS attributes that produce the optimal coherence measure of the seismic signal in the prestack data. Identifying a global optimization algorithm with the best performance is a challenge when solving this optimization problem. This is because the objective function is multimodal and involves a large volume of data, which leads to high computational costs. We introduced a comparative and competitive study through the application of two global optimization algorithms that simultaneously search the FO-CRS attributes from the prestack seismic data, very fast simulated annealing (VFSA) and the differential evolution (DE). By applying this FO-CRS stack to the Marmousi synthetic seismic data set, we have compared the performances of the two optimization algorithms with regard to their efficiency and effectiveness in estimating the five FO-CRS attributes. To analyze the robustness of the two algorithms, we apply them to real land seismic data and show their ability to find the near-optimal attributes and to improve reflection events in noisy data with a very low fold. We reveal that VFSA is efficient in reaching the optimal coherence value with the lowest computational costs, and that DE is effective and reliable in reaching the optimal coherence for determining the best five searched-for attributes. Regardless of the differences, the FO-CRS stack produces enhanced and regularized high-quality CO sections using both global optimization methods.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3