Particle swarm optimization of 2D magnetotelluric data

Author:

Pace Francesca1ORCID,Santilano Alessandro2ORCID,Godio Alberto1ORCID

Affiliation:

1. Politecnico di Torino, Department of Environment, Land and Infrastructure Engineering (DIATI), Torino, Italy.(corresponding author); .

2. Institute of Geosciences and Earth Resources-National Research Council (IGG-CNR), Pisa, Italy..

Abstract

We implement the particle swarm optimization (PSO) algorithm for the two-dimensional (2D) magnetotelluric (MT) inverse problem. We first validate PSO on two synthetic models of different complexity and then apply it to an MT benchmark for real-field data, the COPROD2 data set (Canada). We pay particular attention to the selection of the PSO input parameters to properly address the complexity of the 2D MT inverse problem. We enhance the stability and convergence of the solution of the geophysical problem by applying the hierarchical PSO with time-varying acceleration coefficients (HPSO-TVAC). Moreover, we parallelize the code to reduce the computation time because PSO is a computationally demanding global search algorithm. The inverse problem was solved for the synthetic data both by giving a priori information at the beginning and by using a random initialization. The a priori information was given to a small number of particles as the initial position within the search space of solutions, so that the swarming behavior was only slightly influenced. We have demonstrated that there is no need for the a priori initialization to obtain robust 2D models because the results are largely comparable with the results from randomly initialized PSO. The optimization of the COPROD2 data set provides a resistivity model of the earth in line with results from previous interpretations. Our results suggest that the 2D MT inverse problem can be successfully addressed by means of computational swarm intelligence.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3