Full-waveform inversion and joint migration inversion with an automatic directional total variation constraint

Author:

Qu Shan1ORCID,Verschuur Eric1,Chen Yangkang2ORCID

Affiliation:

1. Delft University of Technology, Delphi Consortium, Mekelweg 5, 2628 CD Delft, Netherlands..

2. Zhejiang University, School of Earth Sciences, Hangzhou, China.(corresponding author).

Abstract

As full-waveform inversion (FWI) is a nonunique and typically ill-posed inversion problem, it needs proper regularization to avoid cycle skipping. To reduce the nonlinearity of FWI, we have developed joint migration inversion (JMI) as an alternative, explaining the reflection data with decoupled velocity and reflectivity parameters. However, the velocity update may also suffer from being trapped in local minima. To optimally include geologic information, we have developed FWI/JMI with directional total variation (TV) as an L1-norm regularization on the velocity. We design the directional TV operator based on the local dip field, instead of ignoring the local structural direction of the subsurface and only using horizontal and vertical gradients in the traditional TV. The local dip field is estimated using plane-wave destruction based on a raw reflectivity model, which is usually calculated from the initial velocity model. With two complex synthetic examples, based on the Marmousi model, we determine that our method is much more effective compared with FWI/JMI without regularization and FWI/JMI with the conventional TV regularization. In the JMI-based example, we also determine that L1 directional TV works better than L2 directional Laplacian smoothing. In addition, by comparing these two examples, it can be seen that the impact of regularization is larger for FWI than for JMI because in JMI the velocity model only explains the propagation effects and, thereby, makes it less sensitive to the details in the velocity model.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3