Enhancement of diffractions in prestack domain by means of a finite-offset double-square-root traveltime

Author:

Coimbra Tiago A.1ORCID,Faccipieri Jorge H.1,Speglich João H.1,Gelius Leiv-J.2,Tygel Martin3ORCID

Affiliation:

1. University of Campinas, Center for Petroleum Studies, Rua Cora Coralina, 350, Cidade Universitária, Campinas, Sao Paulo 13089-970, Brazil..

2. University of Oslo, Department of Geosciences, P.O. Box 1047, Blindern, Oslo 0316, Norway..

3. University of Campinas, Center for Petroleum Studies, Rua Cora Coralina, 350, Cidade Universitária, Campinas, Sao Paulo 13089-970, Brazil and University of Campinas, Department of Applied Mathematics, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária, Campinas, Sao Paulo 13089-970, Brazil..

Abstract

Exploration of redundancy contained in the seismic data set assures enhancement of images that are based on stacking results. This enhancement is the goal of developing multiparametric traveltime equations that are able to approximate reflection and diffraction events in general source-receiver configurations. The main challenge of using these equations is to estimate a large number of parameters in a computationally feasible, reliable, and fast way. To obtain a better fit for diffraction traveltime events than the ones in the literature, we have derived a finite-offset (FO) double-square-root (DSR) diffraction traveltime equation (which depends on 10 parameters in three dimensions and four parameters in two dimensions). Moreover, to reduce the number of parameters, we have developed another version called simplified FO-DSR diffraction traveltime equation (which depends on five parameters in three dimensions and two parameters in two dimensions), which delivers a similar performance. We have developed operators that make use of the simplified FO-DSR traveltime equation to construct the so-called diffraction-only data set volumes (or, more simply, D-volumes) assuring enhancement in the diffraction extraction process. The D-volume construction has two steps: first, a stacking procedure to separate the diffraction events from the input data set and second, a spreading procedure to enhance the quality of these diffractions. As proof of concept, our approach has been tested on 2D/3D synthetic and 2D field data sets with successful results.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3