New insights into the mechanisms of seismicity in the Azle area, North Texas

Author:

Chen Rongqiang1ORCID,Xue Xu1ORCID,Park Jaeyoung1,Datta-Gupta Akhil1,King Michael J.1

Affiliation:

1. Texas A&M University, Harold Vance Department of Petroleum Engineering, College Station, Texas, USA.(corresponding author); .

Abstract

We have performed a site-specific study of the mechanics of induced seismicity in the Azle area, North Texas, using a coupled 3D fluid flow and poroelastic simulation model, extending from the overburden into the crystalline basement. The distinguishing feature of our study is that we account for the combined impact of water disposal injection and gas and water production on the pore pressure and stress distribution in this area. The model is calibrated using observed injection wellhead pressures and the location, timing, and magnitude of seismic events. We used a stochastic multiobjective optimization approach to obtain estimated ranges of fluid flow and poroelastic parameters, calibrated to the pressure, rate, and seismic event data. Mechanisms for induced seismicity were examined using these calibrated models. The calibrated models indicate no fluid movement or pressure increase in the crystalline basement, although there is plastic strain accumulation for the weaker elements along the fault in the basement. The accumulation of strain change appears to be caused by the unbalanced loading on different sides of the fault due to the differential in fluid injection and production. Previous studies ignored the produced gas volume, which is almost an order of magnitude larger than the produced water volume under reservoir conditions and which significantly impacts the pore pressure in the sedimentary formations and the stress distribution in the basement. A quantitative analysis indicates that the poroelastic stress changes dominate in the basement with no noticeable change in pore pressure. Even though the low-permeability faults in the basement are not in pressure communication with the Ellenburger formation, the poroelastic stresses transmitted to the basement can trigger seismicity without elevated pore pressure.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3