Application of supervised descent method to transient electromagnetic data inversion

Author:

Guo Rui1,Li Maokun1ORCID,Fang Guangyou2,Yang Fan1,Xu Shenheng1,Abubakar Aria3ORCID

Affiliation:

1. Tsinghua University, State Key Laboratory on Microwave and Digital Communications, Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Beijing 100084, China.(corresponding author); .

2. Chinese Academy of Sciences, Key Laboratory of Electromagnetic Radiation and Sensing Technology, Beijing 100190, China..

3. Schlumberger, Houston, Texas, USA..

Abstract

Inversion plays an important role in transient electromagnetic (TEM) data interpretation. This problem is highly nonlinear and severely ill posed. Gradient-descent methods have been widely used to invert TEM data, and regularization schemes containing prior information are applied to reduce the nonuniqueness and stabilize the inversion. During the inversion, the partial derivatives are repeatedly computed, which is time and memory consuming. Furthermore, regularization schemes can only provide limited prior information. Much prior information from knowledge and experience cannot be directly used in inversion. In this work, we applied the supervised descent method (SDM) to TEM data inversion. This method contains an offline training stage and an online prediction stage. In the training stage, a training data set is generated according to prior information. Then, the average descent direction between a fixed initial model and the training models can be learned by iterative schemes. In the online stage of prediction, the learned descent directions are applied directly into the inversion to update the models. In this manner, one can select models satisfying the data and model misfit. In this study, SDM is applied to model- and pixel-based inversion schemes. Synthetic examples indicate that SDM inversion can not only enhance the accuracy of inversion due to the incorporation of prior information but also largely accelerate the inversion procedure because it avoids the online computation of derivatives.

Funder

National Key R&D Program of China

National Science Foundation of China

Guangzhou Science Technology Plan

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3