Optimizing the finite-difference implementation of three-dimensional free-surface boundary in frequency-domain modeling of elastic waves

Author:

Cao Jian1ORCID,Chen Jing-Bo1ORCID

Affiliation:

1. Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China; Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China; University of Chinese Academy of Sciences, Beijing, 100049, China.(corresponding author); .

Abstract

The problem of modeling seismic wave propagation for multiple sources, such as in the solution of gradient-based elastic full-waveform inversion, is an important topic in seismic exploration. The frequency-domain finite-difference (FD) method is a good choice for this purpose, mainly because of its simple discretization and high computational efficiency. However, when it comes to modeling the complete elastic wavefields, this approach has limited surface-wave accuracy because, when modeling with the strong form of the wave equation, it is not always easy to implement an accurate stress-free boundary condition. Although a denser spatial sampling is helpful for overcoming this problem, the additional discrete points will significantly increase the computational cost in the resolution of its resulting discrete system, especially in 3D problems. Furthermore, sometimes, when modeling with optimized schemes, an inconsistency in the computation precision between the regions at the free surface and inside the model volume would happen and introduce numerical artifacts. To overcome these issues, we have considered optimizing the FD implementation of the free-surface boundary. In our method, the problem was formulated in terms of a novel system of partial differential equations satisfied at the free surface, and the weighted-averaging strategy was introduced to optimize its discretization. With this approach, we can impose FD schemes for the free surface and internal region consistently and improve their discretization precision simultaneously. Benchmark tests for Lamb’s problem indicate that the proposed free-surface implementation contributes to improving the simulation accuracy on surface waves, without increasing the number of grid points per wavelength. This reveals the potential of developing optimized schemes in the free-surface implementation. In particular, through the successful introduction of weighting coefficients, this free-surface FD implementation enables adaptation to the variation of Poisson’s ratio, which is very useful for modeling in heterogeneous near-surface weathered zones.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3