Elastic tilted orthorhombic (and simpler) wave modeling including free-surface topography

Author:

Hestholm Stig1ORCID

Affiliation:

1. Sinopec Tech Houston LLC, China Petroleum & Chemical Corporation, Houston, Texas, USA.(corresponding author).

Abstract

Computational resources have increased in capacity over time — mostly by speed, partly by memory. Consequently, people have continuously explored the possibilities of performing wave modeling and inversion of increasing physical complexity. Achieving a detailed as possible image of the earth’s subsurface improves the success of hydrocarbon exploration, and it is important for other applications, such as archeology, mining, and engineering. I have developed an accurate computational method for elastic wave modeling up to tilted orthorhombic symmetry of anisotropy. The model may be covered by an arbitrary topographic function along the free surface. Through snapshots and seismograms of the wavefield, I confirm known effects from applying the code to plane, free surfaces (horizontal or tilted) as well as more complex topographies. The method is based on adapting a curved grid to a free-surface topography at hand, and transforming the wave equations and the topography free-surface boundary conditions from this grid to a rectangular grid, where finite-difference (FD) calculations can be performed. Free-surface topography boundary conditions for the particle velocities originate from locally setting the normal stress components to zero at the curved grid free surface. Vanishing normal traction is achieved by additionally imposing mirror conditions on stresses across the free surface. This leads me to achieve a more accurate modeling of free-surface waves (Rayleigh — Rg-waves in particular), using either FDs or any other numerical discretization method. Statics correction, muting, and destructive processing, which all consider free-surface effects as noise, can hence be avoided in inversion/imaging because surface effects can be more accurately simulated. By including near-surface effects in the full wavefield, we ultimately obtain superior inversion for interior earth materials, also for deeper physical medium properties.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3