Physics, applications, and limitations of borehole neutron-gamma density measurements

Author:

Luycx Mathilde1,Torres-Verdín Carlos1

Affiliation:

1. The University of Texas at Austin, Austin, Texas 78712, USA.(corresponding author).

Abstract

Radioactive chemical sources can pose security, health, and environmental risks when used to estimate rock porosity in situ. The oil industry has been developing solutions to eliminate radioactive chemical sources in borehole nuclear logging. Pulsed neutron generators have successfully replaced chemical sources in neutron tools, but cesium-137 is still mainly used for borehole density measurements. Neutron-activated gamma-ray measurements (neutron-gamma) are a possible alternative to radioactive chemical sources in density tools. Despite recent advances, the measurement faces challenges regarding density accuracy across diverse solid and fluid rock compositions and nonnegligible sensitivity to borehole environmental effects. We have examined a theoretical, albeit realistic, logging-while-drilling neutron-gamma density (NGD) tool operating with two inelastic gamma-ray detectors and two fast neutron detectors. With a strong emphasis on measurement physics and source-sensor design, the tool delivers density accuracies comparable to those of gamma-gamma density (GGD) tools with [Formula: see text] error in shale-free formations and [Formula: see text] in shale and shaly formations. Our work also compares NGD with GGD in terms of depth of investigation (DOI), vertical resolution, and sensitivity to borehole environmental effects to determine optimal logging conditions. NGD accuracy is limited in the presence of standoff. With inputs of caliper and mud type, empirical density corrections can be applied up to 0.64 cm (0.25 in) standoff. NGD also has limited applicability in thinly bedded formations with maximum vertical resolution of 76 cm (2.5 ft). However, the measurement outperforms GGD in the presence of invasion because its DOI is twice as large.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3