Seismic on floating ice on shallow water: Observations and modeling of guided wave modes

Author:

Johansen Tor Arne1ORCID,Ruud Bent Ole2,Hope Gaute3ORCID

Affiliation:

1. University of Bergen, Department of Earth Science, Bergen, Norway, University of Tromsø, ARCEx, Research Centre for Arctic Petroleum Exploration, Tromsø, Norway, and The University Centre in Svalbard, Longyearbyen, Norway.(corresponding author).

2. University of Bergen, Department of Earth Science, Bergen, Norway and University of Tromsø, ARCEx, Research Centre for Arctic Petroleum Exploration, Tromsø, Norway..

3. Nansen Environmental and Remote Sensing Center, Bergen, Norway..

Abstract

Seismic mapping of the shallow, coastal areas of the Arctic is best facilitated in periods when the sea is covered with solid, floating ice. Data from three seismic acquisition campaigns on sea ice floating on shallow water reveal how coherent noise related to guided waves is differently exposed for various source and receiver systems placed on and below the ice. The main coherent noise is due to interference of ice flexural and Scholte waves. The experimental data were overall successfully modeled using a wavenumber integration technique. A seismic source at or near the ice generates high-amplitude, slowly propagating, and highly dispersive flexural waves. Their amplitudes are severely reduced when recorded at hydrophones deployed 5 m or more below the sea ice. The extent of flexural waves generated using an air gun below the ice similarly reduces as the depth of the air gun increases, but then the amplitudes of the seabed Scholte waves increase. Our experiments indicate that an inline line source of detonating cord on the ice combined with hydrophones deployed at the appropriate depth below the ice constitute an efficient setup for reducing the imprints of the ice flexural and Scholte waves on seismic data.

Funder

Research Council of Norway

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3