Reciprocity-based passive monitoring with individual sources

Author:

Almagro Vidal Carlos1ORCID,van der Neut Joost1ORCID,Wapenaar Kees1ORCID

Affiliation:

1. Delft University of Technology, Department of Geoscience and Engineering, Faculty of Civil Engineering and Geosciences, 2628 CN Delft, The Netherlands.(corresponding author); .

Abstract

Time-lapse changes in the subsurface can be analyzed by comparing seismic reflection data from two different states, one serving as the base survey and the second as the monitor survey. Conventionally, reflection data are acquired by placing active seismic sources at the acquisition surface. Alternatively, these data can be acquired from passive sources in the subsurface, using seismic interferometry (SI). Unfortunately, the reflection responses as retrieved by SI inherit an imprint of the passive-source distribution; therefore, monitoring with SI requires high passive-source repeatability, which is very often not achievable in practice. We have developed an alternative by using active seismic data for the base survey and a single passive source (e.g., a seismic tremor produced by induced seismicity) for the monitor survey. By constraining the source-radiation pattern of the (active) base survey according to the characteristics of the (passive) monitor survey, we succeed in extracting the time-lapse response in the image domain. We tested our method with numerically modeled data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3