Determination of formation shear attenuation from dipole sonic log data

Author:

Qi Qiaomu1ORCID,Cheng Arthur C. H.2ORCID,Li Yunyue Elita2ORCID

Affiliation:

1. Chengdu University of Technology, College of Geophysics, Chengdu, China and National University of Singapore, Department of Civil and Environmental Engineering, Singapore, Singapore.(corresponding author).

2. National University of Singapore, Department of Civil and Environmental Engineering, Singapore, Singapore..

Abstract

ABSTRACT Formation S-wave attenuation, when combined with compressional attenuation, serves as a potential hydrocarbon indicator for seismic reservoir characterization. Sonic flexural wave measurements provide a direct means for obtaining the in situ S-wave attenuation at log scale. The key characteristic of the flexural wave is that it propagates at the formation shear slowness and experiences shear attenuation at low frequency. However, in a fast formation, the dipole log consists of refracted P- and S-waves in addition to the flexural wave. The refracted P-wave arrives early and can be removed from the dipole waveforms through time windowing. However, the refracted S-wave, which is often embedded in the flexural wave packet, is difficult to separate from the dipole waveforms. The additional energy loss associated with the refracted S-wave results in the estimated dipole attenuation being higher than the shear attenuation at low frequency. To address this issue, we have developed a new method for accurately determining the formation shear attenuation from the dipole sonic log data. The method uses a multifrequency inversion of the frequency-dependent flexural wave attenuation based on energy partitioning. We first developed our method using synthetic data. Application to field data results in a shear attenuation log that is consistent with lithologic interpretation of other available logs.

Funder

MOE Tier-1

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3