Imaging and monitoring of the shallow subsurface using spatially windowed surface-wave analysis with a single permanent seismic source

Author:

Ikeda Tatsunori1ORCID,Tsuji Takeshi2,Nakatsukasa Masashi3,Ban Hideaki3ORCID,Kato Ayato3,Worth Kyle4,White Don5,Roberts Brian5

Affiliation:

1. Kyushu University, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Fukuoka, Japan..

2. Kyushu University, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Fukuoka, Japan and Kyushu University, Department of Earth Resources Engineering, Fukuoka, Japan..

3. Japan Oil, Gas Metal National Corporation, Chiba, Japan..

4. Petroleum Technology Research Centre, Regina, Saskatchewan, Canada..

5. Geological Survey of Canada, Ottawa, Ontario, Canada..

Abstract

Development of shallow subsurface monitoring systems is important for monitoring the ground stability of shallow formation, and also for conventional deep seismic monitoring because with current techniques, temporal changes in shallow seismic velocities can influence monitoring results for the deep subsurface. We have developed an effective shallow seismic imaging and monitoring system with high spatiotemporal resolution and accuracy using a continuous and controlled source system, the accurately controlled routinely operated signal system (ACROSS). The method applies surface-wave analysis to characterize and monitor the shallow subsurface from the spatiotemporal variation of phase velocities. Because the number of available ACROSS units is usually limited, estimating a shallow subsurface with high spatial resolution is a challenging issue in ACROSS-based monitoring. To overcome this problem, we introduced a 2D spatial window into multichannel analysis of surface waves. We analyzed continuous ACROSS data acquired during seven different data periods from 2014 to 2016 at the Aquistore [Formula: see text] storage site in Canada. As a result, we clearly estimated spatial variations of phase velocities using only a single ACROSS unit. The numerical experiments of our method suggested that the spatial variations could be associated with shallow geologic boundaries in the study area. We identified clear seasonal variations of phase velocities in winter, possibly related to ground freezing in shallow sediments, and we showed the high temporal stability of our monitoring approach in warmer seasons. These results indicated that our approach would have the potential to identify spatiotemporal change in shallow subsurface associated with natural phenomena or fluid leakage.

Funder

JSPS KAKENHI

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3