Imaging passive seismic data

Author:

Artman Brad1

Affiliation:

1. Stanford University, Stanford Exploration Project, Mitchell Building, Department of Geophysics, Stanford, California 94305..

Abstract

Imaging passive seismic data is the process of synthesizing the wealth of subsurface information available from reflection seismic experiments by recording ambient sound using an array of geophones distributed at the surface. Crosscorrelating the traces of such a passive experiment can synthesize data that are identical to actively collected reflection seismic data. With a correlation-based imaging condition, wave-equation shot-profile depth migration can use raw transmission wavefields as input for producing a subsurface image. Migration is even more important for passively acquired data than for active data because with passive data, the source wavefields are likely to be weak compared with background and instrument noise — a condition that leads to a low signal-to-noise ratio. Fourier analysis of correlating long field records shows that aliasing of the wavefields from distinct shots is unavoidable. Although this reduces the order of computations for correlation by the length of the original trace, the aliasing produces an output volume that may not be substantially more useful than the raw data because of the introduction of crosstalk between multiple sources. Direct migration of raw field data still can produce an accurate image, even when the transmission wavefields from individual sources are not separated. To illustrate direct migration, I use images from a shallow passive seismic investigation targeting a buried hollow pipe and the water-table reflection. These images show a strong anomaly at the 1-m depth of the pipe and faint events that could be the water table at a depth of around [Formula: see text]. The images are not clear enough to be irrefutable. I identify deficiencies in survey design and execution to aid future efforts.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3