Reliability analysis of seismic attribute in the detection of fault-karst

Author:

Ding Yan1ORCID,Du Qizhen1ORCID,Fu Liyun1ORCID,Jian Shikai1

Affiliation:

1. China University of Petroleum (East China), Key Laboratory of Deep Oil and Gas, Qingdao 266580, China; Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; and China University of Petroleum (East China), Key Laboratory of Geophysical Prospecting, CNPC, Qingdao 266580, China.(corresponding author);

Abstract

In the Tarim Basin, various irregular fractured-vuggy reservoirs have developed along with the main faults. These reservoirs are geologically defined as carbonate fault karst. In the past few years, seismic attributes have been widely used for the identification and evaluation of fault karst. However, there has been less reliability analysis regarding their usage. Imaging using the theoretical fault-karst velocity model can reflect the shapes and distributions of fractures and vugs, whereas imaging using the background velocity can simulate seismic data in real cases. We have adopted an approach based on typical fault-karst theoretical forward modeling to evaluate the reliability of seismic attributes in practical applications. First, we extract various attributes from the images using the theoretical velocity and the background velocity using similarity estimation between them to optimize the sensitive attributes. The analysis result indicates that the instantaneous phase, variance, amplitude gradient, coherence, and texture entropy are more suitable to characterize the anomalies of fractures and vugs with prediction accuracy of 71.7%. Because fracture orientation and density are the key parameters for quantifying the differences between the two images, taking coherence as an example, we extract the fracture traces through circular scanlines and circular windows based on the optimized attributes. The coincidence rate between the predicted fracture density and the known model reaches 83%, and that between the predicted fracture orientation and the known model is greater than 95%. With this remarkable coincidence, we can conclude that optimized seismic attributes are reliable for characterizing fractured-vuggy reservoirs.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Research project of the China National Petroleum Corporation

China National“111¯? Foreign Experts Introduction Plan for Tight Oil Gas Geology and Exploration, and the Deep-Ultradeep Oil Gas Geophysical Exploration

National Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3