Predicting sonic and density logs from drilling parameters using temporal convolutional networks

Author:

Smith Robert1,Bakulin Andrey1,Golikov Pavel1,AlBinHassan Nasher1

Affiliation:

1. Saudi Aramco, EXPEC Advanced Research Center, Dhahran, Saudi Arabia..

Abstract

Sonic and bulk density logs are crucial inputs for many subsurface tasks including formation identification, completion design, and porosity estimation. Economic and operational concerns restrict the acquisition of these logs, meaning the overburden and sometimes entire wells are completely unlogged. In contrast, parameters that monitor drilling operations, such as weight on bit and torque, are recorded for every borehole. Previous studies have applied supervised machine learning approaches to predict these missing logs from the drilling parameters. While the results are promising, they often do not investigate the importance of different features and the corresponding practical implications. Here, we explored the feasibility of predicting compressional slowness and bulk density logs using various combinations of formation markers, gamma-ray logs, and drilling data recorded at the rig. Our tests utilized a temporal convolutional network to allow the model to learn from sequences of input features. Bayesian-based hyperparameter tuning found the optimum set of parameters for each experiment before producing the final log predictions. Finally, a permutation feature importance analysis revealed which input variables contributed most to the outputs. Although drilling parameters contain some insight into the mechanical rock properties, we found that they cannot produce the high-quality log predictions required for many tasks. Supplementing the drilling parameters with a gamma-ray log and formation data produces good-quality log predictions, with the additional inputs helping to constrain the model outputs.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference25 articles.

1. Optuna

2. Time-lapse seismic cross-equalization using temporal convolutional networks

3. Bai, S., J. Z. Kolter, and V. Koltun, 2018, An empirical evaluation of generic convolutional and recurrent networks for sequence modeling: arXiv: 1803.01271.

4. Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl, 2011, Algorithms for hyper-parameter optimization: Presented at the 24th Annual Conference on Neural Information Processing Systems.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3