Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas

Author:

Rutledge James T.1,Phillips W. Scott1

Affiliation:

1. Los Alamos National Laboratory, Geophysics Group, Seismic Research Center, MS D443, Los Alamos, New Mexico 87545.

Abstract

We produced a high‐resolution microseismic image of a hydraulic fracture stimulation in the Carthage Cotton Valley gas field of east Texas. We improved the precision of microseismic event locations four‐fold over initial locations by manually repicking the traveltimes in a spatial sequence, allowing us to visually correlate waveforms of adjacent sources. The new locations show vertical containment within individual, targeted sands, suggesting little or no hydraulic communication between the discrete perforation intervals simultaneously treated within an 80‐m section. Treatment (i.e., fracture‐zone) lengths inferred from event locations are about 200 m greater at the shallow perforation intervals than at the deeper intervals. The highest quality locations indicate fracture‐zone widths as narrow as 6 m. Similarity of adjacent‐source waveforms, along with systematic changes of phase amplitude ratios and polarities, indicate fairly uniform source mechanisms (fracture plane orientation and sense of slip) over the treatment length. Composite focal mechanisms indicate both left‐ and right‐lateral strike‐slip faulting along near‐vertical fractures that strike subparallel to maximum horizontal stress. The focal mechanisms and event locations are consistent with activation of the reservoir's prevalent natural fractures, fractures that are isolated within individual sands and trend subparallel to the expected hydraulic fracture orientation (maximum horizontal stress direction). Shear activation of these fractures indicates a stronger correlation of induced seismicity with low‐impedance flow paths than is normally found or assumed during injection stimulation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 344 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3