Imaging the near surface using velocity inversions of ultra-high-density 3D seismic data

Author:

Dean Tim1,Pavlova Margarita1,Grant Matthew1,Bayly Martin2,Sweeney Denis2,Re Simone3,Strobbia Claudio3

Affiliation:

1. BHP, Brisbane, Queensland, Australia..

2. SuperSeis Pty. Ltd., Brisbane, Queensland, Australia..

3. RealTimeSeismic, Pau, France..

Abstract

Within the coal industry, there is a rich history of the use of the surface seismic method, principally for exploration and employing sparse 2D lines for broad resource delineation and structural modeling. However, the acquisition of 3D seismic surveys adjacent to open-cut mines (from which the majority of coal is extracted) for superior resource definition ahead of their expansion has been explored only recently. Although the reflection results are extremely useful and enable the mapping of faults with sub-5 m throws, there is still interest in determining if the seismic data can be used to image both structures and rock properties in the near surface. In addition to mapping near-surface structures that have geotechnical implications, the ability to map the overburden properties (which can be quite heterogeneous) is desired. Before mining activities can take place, the overburden needs to be removed. The cost of the removal method employed is directly affected by the depth of the weathered layer and rock properties. In particular, hardness can vary significantly. In this paper, we demonstrate how high-density seismic data originally acquired for reflection processing can be processed to generate high-resolution velocity (both VS and VP) depth volumes, which enable the successful identification of shallow structures and the creation of highly detailed near-surface rock-property volumes.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3