Three‐dimensional induction logging problems, Part I: An integral equation solution and model comparisons

Author:

Avdeev Dmitry B.1,Kuvshinov Alexei V.1,Pankratov Oleg V.1,Newman Gregory A.2

Affiliation:

1. Geoelectromagnetic Research Institute, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia.

2. Sandia National Laboratories, Department 6116, MS 0750, 1515 Eubank SE, Albuquerque, New Mexico 87185‐0750.

Abstract

A 3‐D frequency‐domain solution based on a volume integral equation approach has been implemented to simulate induction log responses. In our treatment of the problem, we assume that the electrical properties of the bedding as well as the borehole and invasion zones can exhibit transverse anisotropy. The solution process uses a Krylov subspace iteration to solve the scattering equation, which is based on the modified iterative dissipative method. Internal consistency checks and comparisons with mode matching and finite‐difference solutions for vertical borehole models demonstrate the accuracy of the solution.There are no known analytical solutions for induction log responses arising from deviated boreholes intersecting horizontal bed boundaries. To simulate such responses requires the numerical solution of Maxwell's equations in three dimensions along with independent tests to validate the solution approach and its accuracy. In this paper, we compare two independent 3‐D frequency‐domain solutions for the problem, based on finite differences and the integral equation technique. Specific examples in the quasi‐static limit are studied, including a 45° deviated borehole that intersects formation bed boundaries as well as cases where the bedding exhibits transverse anisotropy. All comparisons made in this paper show very good agreement and demonstrate, for the first time, verifiable induction log responses in the presence of deviated boreholes. We also show that responses arising from deviated boreholes can be significant and must be accounted for properly when interpreting induction logs.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3