Interpretation of a vertical seismic profile conducted in the Columbia Plateau basalts

Author:

Pujol J.1,Fuller B. N.2,Smithson S. B.2

Affiliation:

1. Center for Earthquake Research and Information, Memphis State University, Memphis, Tennessee 38152

2. Department of Geology and Geophysics, The University of Wyoming, P.O. Box 3006, Laramie, Wyoming 82071

Abstract

Seismic reflection data are often of poor quality when recorded in areas where volcanic rocks are present at or near the surface. In order to investigate this phenomenon, a vertical seismic profiling (VSP) experiment was conducted in the Columbia Plateau basalts so that the behavior of seismic energy in subsurface volcanic rocks could be observed directly, thus giving insight into data acquisition in volcanic terrains. The lithologic section at the VSP site consists of low‐velocity (400 m/s to 900 m/s) alluvium in the uppermost 50 m, beneath which are layers of high‐velocity (about 5800 m/s), high‐density basalts interbedded with clay layers with much lower velocities (about 1700 m/s) and densities. These large velocity and density contrasts dramatically influence wave generation and propagation. In spite of the small source‐borehole offset (61 m), large‐amplitude S waves are generated by the downgoing P waves when they reach a shallow (250 m) clay‐basalt boundary. These S waves, in turn, generate strong reflected P waves when they interact with another clay layer at 500 m. On the other hand, strong primary P‐wave reflections are also present in the data but are affected by various interfering effects which reduce their amplitudes. The VSP data are also characterized by large‐amplitude reverberations caused by seismic energy trapped in the upper 250 m of the lithologic section. Reverberations are also observed in surface data recorded near the VSP site. We conclude from our analysis that volcanic rocks, at least in the Columbia Plateau, do not exhibit unusual energy transmission characteristics and that the observations can be explained in terms of the large contrast in the elastic properties of interbedded clay and basalt.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3