The asymptotic response of three‐dimensional basin offsets to magnetotelluric fields at long periods: The effects of current channeling

Author:

Hermance John F.1

Affiliation:

1. Department of Geological Science, Brown University, Providence, RI 02912

Abstract

A simple, inexpensive numerical algorithm is used to analyze the asymptotic long‐period behavior of magnetotelluric (MT) fields in the vicinity of lateral offsets in sedimentary basins. The model is based on the distortion or channeling of telluric currents in a horizontal thin sheet. Although a gross oversimplification of nature, the model represents a class of structures which, because of excessive computer costs, have been relatively unstudied previously. Within, and closely adjacent to, the region of the three‐dimensional (3-D) offset, significant distortion of the MT parameters occurs. Skewness coefficients vary from negligible values to over 0.7. Principal resistivities vary by an order of magnitude. On the other hand, there is not a clear correlation between the degree of distortion of the parameters usually evaluated during MT surveys and the magnitude of conventional 3-D indicators (e.g., the skewness coefficient). Calculations have simulated the technique of averaging resistivity parameters from a large number of field sites in order to arrive at a regionally representative one‐dimensional (1-D) model. The results indicate that unless care is taken in adapting the nature of the averaging algorithm to the class of distortions encountered, significant bias of the averaged parameters may result. Our results also suggest that for this class of structures grave problems may be associated with using the principal resistivity perpendicular to geologic strike, the so‐called transverse magnetic (TM) mode, to infer an equivalent two‐dimensional (2-D) model for the region. A 2-D model would likely show significant modulations in the physical character of the basement which are, in fact, an artifact of telluric distortion caused by current channeling in the surficial heterogeneity.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3