High‐resolution seismic study in the Gas Hills uranium district, Wyoming

Author:

Applegate James K.1,Emilia David A.2,Neitzel Edwin B.3,Donaldson Paul R.1

Affiliation:

1. Boise State University, Boise, Idaho

2. Bendix Field Engineering Corporation, Grand Junction, CO

3. Geophysical Service, Inc., Dallas, TX

Abstract

A study was undertaken to evaluate the effectiveness of the high‐resolution seismic technique for the mapping of stratigraphic and structural controls in the Gas Hills uranium district, Wyoming. The test area is one in which uranium deposits are in Tertiary sediments which unconformably overlie a Mesozoic Paleozoic section. Paleochannels on the unconformity appear to control the localization of the uranium. Drilling in the area allows an evaluation of the effectiveness of the study. Using both sonic and density logs, we computed synthetic seismograms to evaluate the feasibility of predicting the success of the seismic reflection technique and to test this prediction using surface seismic methods. The field study was undertaken utilizing primarily two energy sources—a high‐frequency vibrator (40–350 Hz), and one‐pound dynamite charges shot in 10-ft holes. A limited amount of data was also acquired using detonating cord on the surface. Some three‐dimensional (3-D) data were also acquired, and a later study acquired passive seismic data. The seismic reflection data were successful not only in delineating the unconformable surface and in mapping paleodrainages on the unconformity, but also in defining channel deposits within the Tertiary section. Correlation with the logs shows the success of the study. Several areas were delineated where one would undertake tight drilling patterns, and other areas were delineated in which one might minimize or eliminate exploratory drilling. The synthetic seismograms also could have predicted the success of the seismic work.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3