THE INVERSION OF VERTICAL MAGNETIC DIPOLE SOUNDING DATA

Author:

Glenn W. E.1,Ryu Jisoo2,Ward S. H.1,Peeples W. J.1,Phillips R. J.3

Affiliation:

1. University of Utah, Salt Lake City, Utah 84112

2. University of California, Berkeley, California 94720

3. California Institute of Technology, Pasadena, California 91109

Abstract

It is demonstrated that the generalized linear inverse theory may be applied to vertical magnetic dipole sounding problems. An analysis of inversion of theoretical data for a two‐layer model illustrates the method and indicates certain features not inherent in the commonly practiced curve‐matching method of interpretation. In particular, the standard deviations of the layered model parameters may be estimated. Also the data may contain varying degrees of information about individual model parameters. Indeed, the information density matrix may be used to optimize the data information distribution by choosing only data that contributes information above some minimal level. The relative importance of the information distribution to the determination of individual model parameters may be assessed using both the structure of the information density matrix and the size of the estimated parameter standard deviations. Data may be removed until the estimated standard deviations of the parameters exceed some critical values. This process may be viewed as a method of experimental design such that information/cost ratios may be maximized. Also, if the economy of the interpretation is a serious consideration, then the same process could be used to eliminate those data that have minimal information and whose exclusion does not significantly effect the parameter resolution. This process would tend to maximize interpretation/cost ratios. Inversion analyses of four sets of data previously interpreted by the curve‐matching method illustrate the inherent features of the inverse method. Results of the inverse method of interpretation may be used to make a statistical evaluation of both the fit between observed and predicted data and the resolution of the model parameters.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3