Affiliation:
1. Los Alamos National Laboratory, Earth and Environmental Sciences Division, D462, Los Alamos, New Mexico. .
2. San Diego State University, Department of Geological Sciences, San Diego, California. .
Abstract
We conducted a time-domain airborne electromagnetic (AEM) survey of part of the semiarid Pajarito Plateau of northern New Mexico to determine depths and lateral extent of perched aquifers in the vadose zone and depths and pathways of infiltration to the regional aquifer. The electrical resistivity of the plateau ranged over three orders of magnitude ([Formula: see text] to [Formula: see text]) to a depth of at least [Formula: see text]. Borehole and surface-derived data allow the correlation of resistivity images with the hydrogeology of the plateau. As expected, water exerts a significant control on resistivity. However, the presence of large amounts (up to 90%) of clay in some units, in conjunction with water, also has a significant effect, lowering resistivity (to [Formula: see text]) more than the presence of clay-free saturated zones alone. Because of the resulting low resistivity, we are able to better delineate a large,known volume of clay-altered volcaniclastic rock and postulate the presence of another. Resistivity values of [Formula: see text] cor-relate with depths to saturated zones where no clay is present, but they do not allow us to distinguish between one large or several smaller perched groundwater zones and the underlying regional zone of saturation. We imaged a region of significant infiltration related to a sewage treatment plant and to near-surface hydrogeo-logic conditions conducive to infiltration and correlated with a region of preferential transport of anthropogenic chemicals through the vadose zone. AEM data provide an important synop-tic view of the shallow (few hundred meters) resistivity structure of the plateau. Although interpretation of the data is not unique, when combined with borehole geologic, hydrologic, and geo-chemical data, it can provide relative depths to saturated zones, delineate regions of high clay content (zones of alteration), and image regions of recharge to the regional aquifer.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Reference29 articles.
1. Anderholm, S. K. , 1994, Ground-water recharge near Santa Fe, north-central New Mexico: U. S. Geological Service Water Resources Investigations Report 94–4078:
2. Chapter 6 The Rio Grande Rift
3. Conceptual Models of Vadose Zone Flow and Transport beneath the Pajarito Plateau, Los Alamos, New Mexico
4. Geologic Framework of a Groundwater System on the Margin of a Rift Basin, Pajarito Plateau, North-Central New Mexico
5. Bultman, M. W. , M. E. Gettings, and J. Wynn, 1999, An interpretation of the 1997 airborne electromagnetic (AEM) survey, Fort Huachuca vicinity, Cochise County, Arizona: Open-File Report 99–7-B: U. S. Geological Survey (http://geopubs.wr.usgs.gov/open-file/of99-007-b/).
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献