Calibration of attribute anomalies through prestack seismic modeling

Author:

Verma Sumit1,Mutlu Onur2,Ha Thang1,Bailey William1,Marfurt Kurt J.1

Affiliation:

1. University of Oklahoma, School of Geology and Geophysics, Norman, Oklahoma, USA.kmarfurt@ou.edu.

2. Turkish Petroleum, Geophysics, Ankara, Turkey..

Abstract

Seismic modeling is commonly used in determining subsurface illumination of alternative seismic survey designs, in the calibration of seismic processing and imaging algorithms, and in the design of effective processing workflows. Seismic modeling also forms the mathematical kernel of impedance inversion and is routinely used to predict the amplitude-variation-with-offset response as a function of rock and fluid properties. However, the use of seismic modeling in seismic attribute studies is less common. We have evaluated four case studies in which 2D synthetic common shot gathers were computed (acoustic or elastic) and processed (including migration) to evaluate possible interpretation hypotheses. The modeling we used in our study shows that the lack of continuous coherence anomalies in a faulted Chicontepec Basin survey was due to overprinting by coherent interbed multiples. Attributes computed from the resulting processed model data revealed that subtle curvature anomalies in a Mississippi Lime survey were due to karst collapse rather than to velocity pushdown related to vertical gas migration. Impedance attributes computed from a Woodford Shale model favored the hypothesis of increased porosity correlated with the occurrence of subtle faults rather than amplitude dimming due to poor fault imaging. Finally, modeling of a fractured basement survey in the Texas Panhandle survey indicated that headwave suppression preserved the basement fracture response while increasing the signal-to-noise ratio. Seismic attribute study on seismic modeling results helped significantly in testing possible interpretation hypotheses in all of our case studies.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3