Resistivity and induced polarization monitoring of biogas combined with microbial ecology at a brownfield site

Author:

Mendonça Carlos A.1,Doherty Rory2,Amaral Nathan D.1,McPolin Blathnaid2,Larkin Michael J.3,Ustra Andrea1

Affiliation:

1. University of São Paulo, Department of Geophysics, Rua do Matão, Brazil.

2. The Queen’s University of Belfast, Environmental Engineering Research Centre, School of Planning Architecture and Civil Engineering, Belfast, UK.

3. The Queen’s University of Belfast, School of Biological Sciences, Belfast, UK.

Abstract

The accumulation of biogenic greenhouse gases (methane, carbon dioxide) in organic sediments is an important factor in the redevelopment and risk management of many brownfield sites. Good practice with brownfield site characterization requires the identification of free-gas phases and pathways that allow its migration and release at the ground surface. Gas pockets trapped in the subsurface have contrasting properties with the surrounding porous media that favor their detection using geophysical methods. We have developed a case study in which pockets of gas were intercepted with multilevel monitoring wells, and their lateral continuity was monitored over time using resistivity. We have developed a novel interpretation procedure based on Archie’s law to evaluate changes in water and gas content with respect to a mean background medium. We have used induced polarization data to account for errors in applying Archie’s law due to the contribution of surface conductivity effects. Mosaics defined by changes in water saturation allowed the recognition of gas migration and groundwater infiltration routes and the association of gas and groundwater fluxes. The inference on flux patterns was analyzed by taking into account pressure measurements in trapped gas reservoirs and by metagenomic analysis of the microbiological content, which was retrieved from suspended sediments in groundwater sampled in multilevel monitoring wells. A conceptual model combining physical and microbiological subsurface processes suggested that biogas trapped at depth may have the ability to quickly travel to the surface.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bio‐electrochemical Systems for Monitoring and Enhancement of Groundwater Bioremediation;Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture;2022-09-14

2. Ultrafine Magnetic Particles: A DIET-Proxy in Organic Rich Sediments?;Frontiers in Earth Science;2021-02-26

3. Combined use of geophysical and geochemical methods to assess areas of active, degrading and restored blanket bog;Science of The Total Environment;2018-04

4. Induced polarization of volcanic rocks. 2. Influence of pore size and permeability;Geophysical Journal International;2016-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3