Inversion of multicomponent, multiazimuth, walkaway VSP data for the stiffness tensor

Author:

Dewangan Pawan1,Grechka Vladimir2

Affiliation:

1. Colorado School of Mines, Center for Wave Phenomena, 924 16th Street, Green Center Building, Golden, Colorado 80401.

2. Formerly Colorado School of Mines, Center for Wave Phenomena, Golden, Colorado 80401; presently Shell International Exploration and Production, 3737 Bellaire Boulevard, Post Office Box 481, Houston, Texas 77001‐0481.

Abstract

Vertical seismic profiling (VSP), an established technique, can be used for estimating in‐situ anisotropy that might provide valuable information for characterization of reservoir lithology, fractures, and fluids. The P‐wave slowness components, conventionally measured in multiazimuth, walkaway VSP surveys, allow one to reconstruct some portion of the corresponding slowness surface. A major limitation of this technique is that the P‐wave slowness surface alone does not constrain a number of stiffness coefficients that may be crucial for inferring certain rock properties. Those stiffnesses can be obtained only by combining the measurements of P‐waves with those of S (or PS) modes.Here, we extend the idea of Horne and Leaney, who proved the feasibility of joint inversion of the slowness and polarization vectors of P‐ and SV‐waves for parameters of transversely isotropic media with a vertical symmetry axis (VTI symmetry). We show that there is no need to assume a priori VTI symmetry or any other specific type of anisotropy. Given a sufficient polar and azimuthal coverage of the data, the polarizations and slownesses of P and two split shear (S1 and S2) waves are sufficient for estimating all 21 elastic stiffness coefficients cijthat characterize the most general triclinic anisotropy. The inverted stiffnesses themselves indicate whether or not the data can be described by a higher‐symmetry model.We discuss three different scenarios of inverting noise‐contaminated data. First, we assume that the layers are horizontal and laterally homogeneous so that the horizontal slownesses measured at the surface are preserved at the receiver locations. This leads to a linear inversion scheme for the elastic stiffness tensor c. Second, if the S‐wave horizontal slowness at the receiver location is unknown, the elastic tensor c can be estimated in a nonlinear fashion simultaneously with obtaining the horizontal slowness components of S‐waves. The third scenario includes the nonlinear inversion for c using only the vertical slowness components and the polarization vectors of P‐ and S‐waves. We find the inversion to be stable and robust for the first and second scenarios. In contrast, errors in the estimated stiffnesses increase substantially when the horizontal slowness components of both P‐ and S‐waves are unknown. We apply our methodology to a multiazimuth, multicomponent VSP data set acquired in Vacuum field, New Mexico, and show that the medium at the receiver level can be approximated by an azimuthally rotated orthorhombic model.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3