On data-independent multicomponent interpolators and the use of priors for optimal reconstruction and 3D up/down separation of pressure wavefields

Author:

Özdemir Kemal123,Özbek Ali123,van Manen Dirk-Jan123,Vassallo Massimiliano123

Affiliation:

1. WesternGeco Oslo Technology Centre, Schlumberger House, Asker, Norway. .

2. Schlumberger Cambridge Research, Cambridge, U. K. .

3. WesternGeco London Technology Centre, Schlumberger House, West Sussex, U. K. .

Abstract

In marine acquisition, the interference between the upgoing and downgoing wavefields introduces a receiver ghost which reduces the effective bandwidth of the seismic wavefield. A two-component streamer provides means for removing the receiver ghost by measuring pressure and vertical particle velocity. However, due to nonuniform and relatively sparse sampling in the crossline direction, the seismic data are usually severely aliased in the crossline direction and the deghosting may not be feasible in a true 3D sense. A true multicomponent streamer measures all components of the particle motion wavefield in addition to the pressure wavefield. This enables solving the 3D deghosting and crossline reconstruction problems simultaneously, without making assumptions on the wavefield or the subsurface. We havedeveloped two data-independent algorithms suited for multicomponent acquisition. The first algorithm reconstructs the total pressure wavefield in the crossline direction by using the pressure and the crossline component of particle motion simultaneously. The second algorithm reconstructs the upgoing pressure wavefield by using the pressure, the crossline, and the vertical components of particle motion simultaneously. Both algorithms are optimal in the minimum-mean-squares-error sense and are ideally suited for a small number of irregularly spaced samples, as is common in towed marine acquisition. We find that by using the spectrum of the wavefield as a priori information, these algorithms have the potential to overcome higher-order aliasing than what is predicted by multichannel sampling theorems. Such a priori information can be extracted from an unaliased portion of the seismic data in novel and robust manners.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3