Affiliation:
1. Arcis Corporation, Calgary
2. University of Oklahoma
Abstract
Seismic data are usually contaminated with both random and coherent noise, even when the data have been properly migrated and are multiple-free. Seismic attributes are particularly effective at extracting subtle features from relatively noise-free data. Certain types of noise can be addressed by the interpreter through careful structure-oriented filtering or postmigration footprint suppression. However, if the data are contaminated by multiples or are poorly focused and imaged due to inaccurate velocities, the data need to go back to the processing team.
Publisher
Society of Exploration Geophysicists
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献