Multichannel models for the estimation of radon background in airborne gamma‐ray spectrometry

Author:

Minty Brian R. S.1

Affiliation:

1. Australian Geological Survey Org., GPO Box 378, Canberra, ACT 2601, Australia.

Abstract

Adequate background correction is a crucial step in processing airborne gamma‐ray spectrometric data because any errors are amplified during subsequent processing procedures. Two multichannel models for the estimation of atmospheric radon background are proposed. The spectral‐ratio method uses the relative heights of uranium (U) series photopeaks to estimate the contribution of atmospheric radon to observed spectra. The full‐spectrum method estimates the atmospheric radon contribution through the weighted least‐squares fitting of potassium (K), U, thorium (Th), and radon component spectra to the observed spectra. Both the spectral‐ratio and full‐spectrum methods are adequately calibrated through the estimation of component spectra from calibration experiments on the ground using radioactive calibration sources and wood to simulate the attenuation of gamma rays by air. The simulated heights used in these calibrations must be mapped onto real heights through calibration flights over an airborne calibration range. The spectral‐ratio method is also adequately calibrated using a heuristic calibration procedure. An iterative minimization method is used to find the optimum values of the calibration constants such that the radon background over suitable calibration lines is best removed.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3