Effects of terrain on borehole gravity data

Author:

Hearst J. R1,Schmoker J. W.2,Carlson R. C.1

Affiliation:

1. Lawrence Livermore Laboratory, P.O. Box 808, Stop L222, Livermore, CA 94550

2. U.S. Geological Survey, M.S. 964, Box 25046, Denver Federal Center, Denver, CO 80225

Abstract

The effect of terrain on gravity measurements in a borehole and on formation density derived from borehole gravity data is studied as a function of depth in the well, terrain elevation, terrain inclination, and radial distance to the terrain feature. The vertical attraction of gravity [Formula: see text] in a borehole resulting from a terrain element is small at the surface and reaches an absolute maximum at a depth of about one and one‐half times the radial distance to the terrain element, then decreases at greater depths. The effect of terrain on calculated formation density is proportional to the vertical derivative of [Formula: see text] and is maximum at the surface, passes through zero where |[Formula: see text]| is greatest, and reaches a second extremum of opposite sign to the first and of much lower magnitude. Accuracy criteria for borehole‐gravity terrain corrections show that elevation accuracy requirements are most stringent for a combination of nearby terrain features and near‐surface gravity stations. Sensitivity to terrain inclination is also greatest for this combination. The measurement of the free‐air gradient of gravity, commonly made’slightly above the ground surface, is extremely sensitive to topographic irregularities within about 300m of the measurement point. The effect of terrain features 21.9 to 166.7 km from the well [Hammer’s (1939) zone M through Hayford‐Bowie’s (1912) zone O] on calculated formation density is nearly constant with depth. At these distances, the terrain correction will be equivalent to a dc shift of about [Formula: see text] of average elevation above or below the correction datum. The effect of topography beyond 166.7 km is not likely to exceed [Formula: see text].

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gravimetric surveys for assessing rock mass condition around a mine shaft;Acta Geophysica;2017-05-18

2. Evaluation of formation pore pressure behind the casing using borehole gravity data;Studia Geophysica et Geodaetica;2016-11-11

3. Study of subsurface structure based on borehole gravimetry;SEG Technical Program Expanded Abstracts 1989;1989-01

4. Borehole Gravity Measurements in the Salton Sea Scientific Drilling Project Well State 2-14;Journal of Geophysical Research: Solid Earth;1988-11-10

5. Geodetic theory;Reviews of Geophysics;1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3