Volume-based curvature computations illuminate fracture orientations — Early to mid-Paleozoic, Central Basin Platform, west Texas

Author:

Blumentritt Charles H.1,Marfurt Kurt J.1,Sullivan E. Charlotte1

Affiliation:

1. Allied Geophysical Laboratories, University of Houston Room 510 Science and Research Building 1, Cullen Road Entrance 14 Houston, Texas 77204.

Abstract

Volumetric curvature analysis is a simple but computationally intensive procedure that provides insight into fracture orientation and regional stresses. Until recently, curvature analysis has been limited to computation along horizon surfaces that may be affected by unintentional bias and picking errors introduced during the interpretation process. Volumetric curvature is best estimated in a two-step process. In the first step, we use a moving-analysis subvolume to estimate volumetric reflector dip and azimuth for the best-fit tangent plane for each sample in the full volume. In the second step, we calculate curvature from adjacent measures of dip and azimuth. We use larger curvature analysis windows to estimate longer wavelength curvatures. Such a technique allows us to output full 3D volumes of curvature values for one or more scales of analysis. We apply these techniques to a data set from the Central Basin Platform of west Texas and find lineaments not observable with other seismic attributes. These lineaments indicate that, in the lower Paleozoic interval, a left-lateral shear couple oriented due east-west controls the local stress regime. Such a model predicts that extension faulting and fractures will be oriented northeast-southwest. The example demonstrates the potential of this new technology to determine stress regimes and predict azimuths of open fractures.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference19 articles.

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3