Rise times of attenuated seismic pulses detected in both empty and fluid‐filled cylindrical boreholes

Author:

Blair D. P.1

Affiliation:

1. CSIRO, Division of Applied Geomechanics, P.O. Box 54, Mount Waverly, Victoria 3149, Australia

Abstract

Fourier‐Bessel theory is used to derive filters representing the influence of both empty and fluid‐filled cylindrical boreholes on particle motion induced in rock by a plane P-wave incident perpendicular to the borehole axis. For wavelengths greater than 10 times the borehole circumference, the effect of the borehole on particle motions is shown to be negligible; thus the results have little relevance for the long wavelengths commonly encountered in earthquake seismology. The results are, however, relevant to the study of stress wave propagation at ultrasonic frequencies in rock masses. For small wavelengths (αa > 3.0) the filter representing particle motion on the wave incident site of an empty borehole reduces to a linear phase filter which increases all amplitudes by a factor of 2 while the filter representing fluid stress at the center of a fluid‐filled borehole may be reduced to simple mathematical expressions. Experimental results were obtained for the interaction of a stress wave with either accelerometers mounted in an empty borehole or a hydrophone located centrally in a fluid‐filled borehole. Both theory and experiment show a similar distortion in the rise time of the pulse traveling past the borehole.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic response of mine pit walls;International Journal of Rock Mechanics and Mining Sciences;2018-06

2. Method for model scale blasting;Journal of Mining Science;2015-09

3. Case study of the cementing phase of an observation well at the Pembina Cardium CO2 monitoring pilot, Alberta, Canada;International Journal of Greenhouse Gas Control;2011-07

4. Instrumented Model Rock Blasting;Journal of Testing and Evaluation;2011

5. 1D viscoelastic waveform inversion for Q structures from the surface seismic and zero-offset VSP data;GEOPHYSICS;2009-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3