Predictive deconvolution and the zero‐phase source

Author:

Gibson Bruce1,Larner Ken1

Affiliation:

1. Western Geophysical Company, P.O. Box 2469, Houston, TX 77252

Abstract

Predictive deconvolution is commonly applied to seismic data generated with a Vibroseisr® source. Unfortunately, when this process invokes a minimum‐phase assumption, the phase of the resulting trace will not be correct. Nonetheless, spiking deconvolution is an attractive process because it restores attenuated higher frequencies, thus increasing resolution. For detailed stratigraphic analyses, however, it is desirable that the phase of the data be treated properly as well. The most common solution is to apply a phase‐shifting filter that corrects for errors attributable to a zero‐phase source. The phase correction is given by the minimum‐phase spectrum of the correlated Vibroseis wavelet. Because no minimum‐phase spectrum truly exists for this bandlimited wavelet, white noise is added to its amplitude spectrum in order to design the phase‐correction filter. Different levels of white noise, however, produce markedly different results when field data sections are filtered. A simple argument suggests that the amount of white noise used should match that added in designing the (minimum‐phase) spiking deconvolution operator. This choice, however, also produces inconsistent results; field data again show that the phase treatment is sensitive to the amount of added white noise. Synthetic data tests show that the standard phase‐correction procedure breaks down when earth attenuation is severe. Deterministically reducing the earth‐filter effects before deconvolution improved the resulting phase treatment for the synthetic data. After application of the inverse attenuation filter to the field data, however, phase differences again remain for different levels of added white noise. These inconsistencies are attributable to the phase action of spiking deconvolution. This action is dependent upon the shape of the signal spectrum as well as the spectral shape and level of contaminating noise. Thus, in practice the proper treatment of phase in data-dependent processing requires extensive knowledge of the spectral characteristics of both signal and noise. With such knowledge, one could apply deterministic techniques that either eliminate the need for statistical deconvolution or condition the data so as to satisfy better the statistical model assumed in data‐dependent processing.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3