Microseismic evidence for horizontal hydraulic fractures in the Marcellus Shale, southeastern West Virginia

Author:

Alalli Abdulgader A.1,Zoback Mark D.1

Affiliation:

1. Stanford University, Department of Geophysics.

Abstract

An integrated analysis of multistage hydraulic fracture stimulation done in three horizontal wells in the Marcellus Shale in southeastern West Virginia revealed that nearly half (14 out of 31) of the examined stages initiated horizontal hydraulic fractures. The study was performed in an area characterized by a transitional strike-slip/reverse faulting stress state where the maximum horizontal principal stress (SHmax) is oriented N55°E. The stages that produced horizontal hydraulic fractures were all within the organic-rich Lower Marcellus Shale. Two lines of evidence indicate horizontal hydraulic fracture propagation. The measured least principal stress of those stages was of similar magnitude to the vertical stress (SV), indicating that the vertical stress and microseismic events are limited to a narrow horizontal layer and do not propagate vertically out of the Lower Marcellus Shale. Both lines of argument indicate that the vertical stress is the least principal stress, perhaps due to viscoplastic stress relaxation in the clay- and kerogen-rich Lower Marcellus Shale. In the 17 stages where perforations were placed in the stiffer Onondaga and Cherry Valley formations, the measured least principal stresses were less than the magnitude of SV, indicating that Shmin was the least principal stress. The microseismic data indicate vertical hydraulic fracture propagation, principally upward outside the Marcellus Shale. Significant gas was produced from the two wells with horizontal fractures in the organic-rich Lower Marcellus Shale, perhaps because twice as much proppant was used as in stages characterized by vertical fracture propagation.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3