Metalliferous mining geophysics — State of the art after a decade in the new millennium

Author:

Vallée Marc A.123,Smith Richard S.123,Keating Pierre123

Affiliation:

1. Fugro Airborne Surveys, Ottawa, Canada..

2. Laurentian University, Sudbury, Canada..

3. Geological Survey of Canada, Ottawa, Canada..

Abstract

Mining exploration was very active during the first decade of the twenty-first century because there were numerous advances in the science and technology that geophysicists were using for mineral exploration. Development came from different sources: instrumentation improvements, new numerical algorithms, and cross-fertilization with the seismic industry. In gravity, gradiometry kept its promise and is on the cusp of becoming a key technology for mining exploration. In potential-field methods in general, numerous techniques have been developed for automatic interpretation, and 3D inversion schemes came into frequent use. These inversions will have even greater use when geologic constraints can be applied easily. In airborne electromagnetic (EM) methods, the development of time-domain helicopter EM systems changed the industry. In parallel, improvements in EM modeling and interpretation occurred; in particular, the strengths and weaknesses of the various algorithms became better understood. Simpler imaging schemes came into standard use, whereas layered inversion seldom is used in the mining industry today. Improvements in ground EM methods were associated with the development of SQUID technology and distributed-acquisition systems; the latter also impacted ground induced-polarization (IP) methods. Developments in borehole geophysics for mining and exploration were numerous. Borehole logging to measure physical properties received significant interest. Perhaps one reason for that interest was the desire to develop links between geophysical and geologic results, which also is a topic of great importance to mining geologists and geophysicists.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference296 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3