A new variable‐magnetization terrain correction method for aeromagnetic data

Author:

Grauch V. J. S.1

Affiliation:

1. U.S. Geological Survey, Box 25046, MS 964, Denver Federal Center, Denver, CO 80225

Abstract

Terrain effects in aeromagnetic data are produced by rugged, magnetic topography. These effects mimic the shape of topography and can often be so large that they obscure anomalies of interest. Thus it is desirable to remove terrain effects from aeromagnetic data in order to isolate the anomalies to be investigated. However, removal of aeromagnetic terrain effects has been a longstanding problem. Previously developed methods have succeeded only in certain, specific geologic situations. I present a new aeromagnetic terrain‐correction method that is superior to the previously developed methods for the general case. This method takes into account the highly variable magnetic properties of rocks and can remove terrain effects whether the sources of interest are shallow or deep. The new method is based on the assumption that magnetic sources of interest are often geometrically unrelated to terrain. It finds the magnetization that gives a magnetic‐field residual with minimum correlation to terrain effects for a window of data within a grid of magnetic‐field values. By repeating the calculation for windows covering the entire grid, a grid of variable‐magnetization values is produced which is combined with topography to calculate a magnetic‐terrain correction. The variable‐magnetizaton method was extensively tested using theoretical models (where the answer is known) and using real data from the Lake City caldera area in the San Juan Mountains of southern Colorado. The tests demonstrated the method’s effectiveness in removing terrain effects from aeromagnetic data. Valid terrain corrections were not obtained where anomalies of interest correlated with terrain effects. However, these places are readily recognizable and easily corrected by editing some of the magnetization values.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3