Affiliation:
1. Colorado School of Mines, Center for Wave Phenomena, Golden, Colorado 80401..
2. Colorado School of Mines, Physical Acoustics Laboratory, Golden, Colorado 80401..
Abstract
We examine radiative transfer theory, which accounts for the multiple scattering of waves in a layered medium composed of randomly placed thin beds excited by a 1D source. At its most basic level, radiative transfer predicts that the wavefield separates into a coherent, or wavelike, part and an incoherent, or diffusive, flow after a length scale known as a mean free path. The dynamic properties of the coherent and incoherent wavefield are linked. For 1D Rayleigh scatterers, or thin beds, we show that the exponential decay of the coherent wave predicted by radiative transfer corresponds to the decay predicted by the O'Doherty–Anstey formula. This equivalence reveals an underlying relationship between radiative transfer and mean field theory. Finite-difference simulations of the scalar wave equation with randomly placed thin beds demonstrate the diffusive behavior of the incoherent energy at late times.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献