Affiliation:
1. TNL Consultants, Carine, Australia. .
Abstract
A scale-independent analytic model of seismic radiation from a column of explosive is derived in terms of the blast hole radius [Formula: see text], charge length, explosive velocity of detonation (VoD), and distance [Formula: see text] to a monitoring station. The treatment is based on linear viscoelasticity in which the nonlinear response of rock close to the blast hole is modeled as a sufficiently low-[Formula: see text] material having an exponential increase in [Formula: see text] with distance from the source. Although limited by this assumption, the present analytic model avoids the more serious discretization problems associated with numerical models when driven by the high-frequency pressure load. Furthermore, numerical models are not useful in displaying scale independence. Exploration and mining geophysics typically require short explosive charges characterized by a length/radius of approximately 10. The model shows that for such charges ata small [Formula: see text], the seismic displacement increases with the VoD; however, as the [Formula: see text] increases, the displacement becomes insensitive to the VoD. Field measurements of seismic-wave transmission resulting from short charges show that a plot of rise time against traveltime is approximately linear, with an intercept that traditionally is assumed to be the rise time of the explosive source itself. However, the present model shows that this assumption is incorrect and suggests that if measurements could be made very close to the blast hole, then the rise-time plot would be nonlinear and well might correspond to the region of nonlinear rock response. The extractive mining industry typically requires long explosive columns characterized by a length/radius [Formula: see text], for which [Formula: see text] typifies the near-field. The model predicts that seismic transmission in this region is dominated completely by P-Mach and S-Mach wave propagation, dependent on the VoD.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献