Prestack Bayesian lithofacies classification technology and application in oil-sand reservoir prediction

Author:

Wang Zongjun1ORCID,Tian Nan1ORCID,Dong Hongchao1

Affiliation:

1. State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China and CNOOC Research Institute Ltd., Beijing 100028, China.(corresponding author); .

Abstract

The oil-sand reservoirs in the Athabasca region of Canada are estuarine deposits affected by tides. The strata are inclined, and the interlayers are well-developed. Accurate spatial characterization of reservoirs and interlayers is the key for efficient oil-sand development. In this paper, we have used prestack Bayesian lithofacies classification technology to predict the spatial distribution characteristics of reservoirs and interlayers of oil-sand reservoirs. We first use log lithofacies data as a label, select lithofacies sensitive elastic parameters to make a lithofacies classification probability distribution crossplot, and then project the lithofacies-sensitive elastic parameter volumes into the lithofacies classification probability distribution crossplot. Finally, we predict the spatial probability distribution of different lithofacies. Probabilistic characterization can enhance the recognition of transitional lithology and thin layers in the inversion results, reduce the uncertainty in the prediction of reservoirs and interlayers, and significantly improve the prediction accuracy of reservoirs and interlayers. The field application results in the Kinosis study area indicate that the probability volume predicted by this technology can distinguish interlayers greater than 1 m thick and identify interlayers greater than 2 m thick, which meets the technical requirements of oil-sand steam-assisted gravity drainage development.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3