Fault enhancement comparison among coherence enhancement, probabilistic neural networks, and convolutional neural networks in the Taranaki Basin area, New Zealand

Author:

Mora José P.1,Bedle Heather2ORCID,Marfurt Kurt J.2ORCID

Affiliation:

1. The University of Oklahoma, School of Geosciences, Norman, Oklahoma 73019-0390, USA. (corresponding author)

2. The University of Oklahoma, School of Geosciences, Norman, Oklahoma 73019-0390, USA.

Abstract

Fault identification is a critical component of seismic interpretation. During the past 25 years, coherence, curvature, and other seismic attributes sensitive to faults improved seismic interpretation, but human interaction is still required to generate a complete fault interpretation. Today, image enhancement of fault-sensitive attributes, multiattribute fault analysis using shallow learning, and deep-learning algorithms based on extensive training and convolutional neural networks (CNNs) are promising fault interpretation workflows. We have compared three workflows to test fault-detection capabilities; these include image enhancement, probabilistic neural networks (PNNs), and CNNs. We compared results to human-interpreted faults as our ground truth for a merged 3D seismic survey acquired in the Taranaki Basin, New Zealand. We extracted fault surfaces from the results of the workflows using them as seed points for an active contour method. Extracted faults are then compared to the human-interpreted surface using the Hausdorff distance. Data conditioning, including spectral balancing and structure-oriented filtering, improved the performance of all three workflows. Although all three approaches produce enhanced fault volumes, we find differences in fault location and different artifacts (mispredicted faults). Because all three methods exhibit “false positive” predictions, the enhanced multispectral coherence method produces faults and stratigraphic edges in the final image, including residual stair-step artifacts. In our implementation, PNN produces many salt-and-pepper artifacts through the resulting image, suggesting that we might need to include better training data or reduce the volume size to reduce the number of relevant classes to obtain an improved classification. The CNN algorithm is trained with synthetic data that provide rapid results, correctly identifying larger faults, but missing smaller faults and, in some cases, misclassifying mass-transport deposits and angular unconformities as being faults.

Funder

University of Oklahoma

Fundacion Saldarriaga-Concha

Fulbright Association

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3