Estimating SHmax azimuth with P sources and vertical geophones: Use P-P reflection amplitudes or use SV-P reflection times?

Author:

Hardage Bob1,Graul Mike2,Hall Tim2,Hall Chris2,Kelley Mark3,Smith Valerie3,Modroo Allen4

Affiliation:

1. Consultant, Maumee, Ohio 43537, USA..

2. Texseis, Houston, Texas 77055, USA..

3. Battelle, Columbus, Ohio 43201, USA..

4. CORE Energy, Traverse City, Michigan 49684, USA..

Abstract

We compared two methods for extracting the azimuth of maximum horizontal stress (SHmax) from 3D land-based seismic data generated by a P source and recorded with vertical geophones. In the first method, we used the direct-SV mode that is produced by all land-based P sources. P sources generate SV illumination that radiates in all azimuth directions from a source station and creates SV-P reflections that are recorded by vertical geophones. Unless stratigraphy has steep dip, SV-P raypaths recorded by vertical geophones are the reverse of P-SV raypaths recorded by horizontal geophones. Thus, SV-P data provide the same S-wave sensitivity to stress fields as popular P-SV data do. In the second method, we retrieved P-P reflections and then performed an amplitude-versus-incident-angle (AVA) analysis of the amplitude-gradient behavior of P-P reflection wavelets. We did this analysis in narrow azimuth corridors to determine the gradient of reflection-wavelet amplitudes as a function of azimuth. This P-P AVA amplitude-gradient method has been of great interest in the reflection seismology community since it was introduced in the late 1990s. Each of these methods, AVA analysis of the gradient of P-P reflection amplitudes and azimuth-dependent arrival times of SV-P reflections can be used to determine the azimuth of SHmax stress. We compare the results of the two methods with ground truth measurements of SHmax azimuth at a CO2 sequestration site in the Michigan Basin. SHmax azimuths were determined from P-P and SV-P data at three major boundaries at depths of approximately 3500 ft (1067 m), 5500 ft (1676 m), and 7500 ft (2286 m). Two estimates of SHmax azimuth (one using SV-P data and one using P-P data) were made at each stacking bin inside a 24 mi2 (62 km2) image space. The result was approximately 98,000 estimates of SHmax azimuth across each of these three boundaries for each of these two prediction strategies. Histogram displays of PP AVA gradient estimates had peaks at correct azimuths of SHmax at all three depths, but the spread of the distributions widened with depth and split into two peaks at the deepest boundary. In contrast, each histogram of SHmax azimuth predicted by azimuth-dependent SV-P traveltimes had a single, definitive peak that was positioned at the correct SHmax azimuth at all three boundary depths.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New approaches to an old problem: addressing spatial gaps in the World Stress Map;Geological Society, London, Special Publications;2024-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3