The self‐potential method in the geothermal exploration of Greece

Author:

Apostolopoulos George1,Louis Ioannis2,Lagios Evangelos2

Affiliation:

1. General Secretariat for Research and Technology, Ministry of Development, Athens, Greece

2. Geophysics‐Geothermy Division, Department of Geology, University of Athens, Panepistimiopolis, Ilissia, Athens 15784, Greece. Emails:

Abstract

Self‐potential (SP) anomalies are generated by flows of fluid, heat, and ions in the earth. SP investigations have been used to locate and delineate sources associated with such flows in three areas of geothermal interest in Greece—Lesvos Island, Loutra Hypatis (central Greece), and Nisyros Island. A combination of geophysical methods, with SP being the primary method, has been applied in these areas. The SP method is adversely influenced by various sources of noise. Field procedures have been suggested to minimize their effects by monitoring electrode polarization and telluric activity. The interpretation of SP contour maps is preferred to using profile data. A procedure was adopted for SP interpretation, and the results were satisfactory. However, this model is based on thermoelectric sources only and is not related directly to hot fluid movement. In all three survey areas, the geothermal zones delimited by the SP interpretation in combination with data acquired by other geophysical methods result in an integrated interpretation of the geothermal system. Since SP and very‐low‐frequency (VLF) anomalies can be generated by the same geological source (i.e., geothermal, highly conductive zone), the corresponding results are compared to provide a strong indication of the presence of geothermal zones. The activity of geothermal zones affects the conductivity of the surrounding medium, which also can be detected by dc resistivity and audio‐magnetotelluric (AMT) methods. In addition, geothermal zones can be related to various interfaces or tectonic features that can be detected by gravity or seismic methods.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3