Affiliation:
1. Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401
Abstract
Gaussian beam migration (GBM), as it is implemented today, efficiently handles isotropic inhomogeneous media. The approach is based on the solution of the wave equation in ray‐centered coordinates. Here, I extend the method to work for 2-D migration in generally anisotropic inhomogeneous media. Extension of the Gaussian‐beam method from isotropic to anisotropic media involves modification of the kinematics and dynamics in the required ray tracing. While the accuracy of the paraxial expansion for anisotropic media is comparable to that for isotropic media, ray tracing in anisotropic media is much slower than that in isotropic media. However, because ray tracing is just a small portion of the computation in GBM, the increased computational effort in general anisotropic GBM is typically only about 40%. Application of this method to synthetic examples shows successful migration in inhomogeneous, transversely isotropic media for reflector dips up to and beyond 90°. Further applications to synthetic data of layered anisotropic media show the importance of applying the proper smoothing to the velocity field used in the migration. Also, tests with synthetic data show that the quality of anisotropic migration of steep events in a medium with velocity increasing with depth is much more sensitive to the Thomsen anisotropy parameter ε than to the parameter δ. Thus, a good estimate of ε is needed to apply anisotropic migration with confidence.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
122 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献