Velocity anisotropy in shales: A petrophysical study

Author:

Vernik Lev1,Liu Xingzhou1

Affiliation:

1. Stanford University, Department of Geophysics, Stanford, CA 94305-2215

Abstract

Using ultrasonic velocity and anisotropy measurements on a variety of shales with different clay and kerogen content, clay mineralogy, and porosity at a wide range of effective pressure, we find that elastic anisotropy of shales increases substantially with compaction. The effect is attributed to both porosity reduction and smectite‐ to‐illite transformation with diagenesis. A means of kerogen content mapping using velocity versus porosity crossplot for shales is shown. Matrix anisotropy of shales dramatically increases with kerogen reaching the maximum values of about 0.4 at total organic carbon (TOC)=15–20%. A strong chemical softening effect was found in shales containing even minor amounts of swelling (smectite) clay when saturated with aqueous solution. This effect results in a significant P‐wave anisotropy reduction as compared to dry and oil‐saturated shales. Since mature black shales are normally oil wet, this effect can only have a local significance restricted to the wellbore wall. Accurate measurements of phase velocities, including velocities at a 45° direction to the bedding plane, allow us to immediately calculate elastic stiffnesses and anisotropic parameters. Intrinsic (high pressure) properties of shales display an ε > δ > 0 relation. Introduction of the bedding‐parallel microcracks in overpressured shales results in a δ decrease when fully fluid saturated and a δ increase when partially gas saturated, with a characteristic effect on the shape of the P‐wave velocity surface at small angles of incidence. Filtering the contribution of the intrinsic anisotropy of shales, it is possible to estimate the pore fluid phase, microcrack density, and aspect ratio parameters using seismic anisotropy measurements.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 497 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of elastic anisotropic models on the prediction of horizontal stresses and hydraulic fracture geometry;Geological Society, London, Special Publications;2024-01-22

2. Estimating the anisotropy of the vertical transverse isotropy coal seam by rock physics model–based inversion;Geophysical Prospecting;2024-01-17

3. Advances in Well Logging Techniques for Shale Reservoirs Exploration;Unconventional Shale Gas Exploration and Exploitation;2024

4. Using anisotropic rock physics to model VTI parameters;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

5. Quantitative characterization of lrati shale through laboratory measurement and rock physical modeling;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3